Q1. Log-logistic survival model

The log-logistic distribution with the probability density function \[ f(y) = \frac{e^\theta \lambda y^{\lambda - 1}}{(1 + e^{\theta} y^{\lambda})^2} \] is sometimes used for modelling survivial times.

  1. Find the survivor function \(S(y)\), the hazard function \(h(y)\) and the cumulative hazard function \(H(y)\).

  2. Show that the median survival time is \(e^{-\theta / \lambda}\).

  3. Plot the hazard function for \(\lambda = 1\) and \(\lambda = 5\) with \(\theta = -5\), \(\theta = -2\) and \(\theta = 1/2\).

Q2. Balanced one-way ANOVA random effects model

Consider the balanced one-way ANOVA random effects model with \(a\) levels and \(n\) observations in each level \[ y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i=1,\ldots,a, \quad j=1,\ldots,n. \] where \(\alpha_i\) are iid from \(N(0,\sigma_\alpha^2)\), \(\epsilon_{ij}\) are iid from \(N(0, \sigma_\epsilon^2)\).

  1. Derive the ANOVA estimate for \(\mu\), \(\sigma_\alpha^2\), and \(\sigma_{\epsilon}^2\). Specifically show that \[\begin{eqnarray*} \mathbb{E}(\bar y_{\cdot \cdot}) &=& \mathbb{E} \left( \frac{\sum_{ij} y_{ij}}{na} \right) = \mu \\ \mathbb{E} (\text{SSE}) &=& \mathbb{E} \left[ \sum_{i=1}^a \sum_{j=1}^n (y_{ij} - \bar{y}_{i \cdot})^2 \right] = a(n-1) \sigma_{\epsilon}^2 \\ \mathbb{E} (\text{SSA}) &=& \mathbb{E} \left[ \sum_{i=1}^a \sum_{j=1}^n (\bar{y}_{i \cdot} - \bar{y}_{\cdot \cdot})^2 \right] = (a-1)(n \sigma_{\alpha}^2 + \sigma_{\epsilon}^2), \end{eqnarray*}\] which can be solved to obtain ANOVA estimate \[\begin{eqnarray*} \widehat{\mu} &=& \frac{\sum_{ij} y_{ij}}{na}, \\ \widehat{\sigma}_{\epsilon}^2 &=& \frac{\text{SSE}}{a(n-1)}, \\ \widehat{\sigma}_{\alpha}^2 &=& \frac{\text{SSA}/(a-1) - \widehat{\sigma}_{\epsilon}^2}{n}. \end{eqnarray*}\]

  2. Derive the MLE estimate for \(\mu\), \(\sigma_\alpha^2\), and \(\sigma_{\epsilon}^2\). Hint: write down the log-likelihood and find the maximizer.

  3. (Optional) Derive the REML estimate for \(\mu\), \(\sigma_\alpha^2\), and \(\sigma_{\epsilon}^2\).

  4. For all three estimates, check that your results match those we obtained using R for the pulp example in class.

Q3. Estimation of random effects

  1. Assume the conditional distribution \[ \mathbf{y} \mid \boldsymbol{\gamma} \sim N(\mathbf{X} \boldsymbol{\beta} + \mathbf{Z} \boldsymbol{\gamma}, \sigma^2 \mathbf{I}_n) \] and the prior distribution \[ \boldsymbol{\gamma} \sim N(\mathbf{0}_q, \boldsymbol{\Sigma}). \] Then by the Bayes theorem, the posterior distribution is \[\begin{eqnarray*} f(\boldsymbol{\gamma} \mid \mathbf{y}) &=& \frac{f(\mathbf{y} \mid \boldsymbol{\gamma}) \times f(\boldsymbol{\gamma})}{f(\mathbf{y})}, \end{eqnarray*}\] where \(f\) denotes corresponding density. Show that the posterior distribution is a multivariate normal with mean \[ \mathbb{E} (\boldsymbol{\gamma} \mid \mathbf{y}) = \boldsymbol{\Sigma} \mathbf{Z}^T (\mathbf{Z} \boldsymbol{\Sigma} \mathbf{Z}^T + \sigma^2 \mathbf{I})^{-1} (\mathbf{y} - \mathbf{X} \boldsymbol{\beta}). \]

  2. For the balanced one-way ANOVA random effects model, show that the posterior mean of random effects is always a constant (less than 1) multiplying the corresponding fixed effects estimate.

Q4. ELMR Exercise 11.1 (p251)